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 Electronic structure of bilayer graphene 

 

 Electronic structure of trilayer graphene 

 

 Electronic structure of multilayer graphene 

 

 References for further reading  



 Four atoms in a unit cell 

 

 Second carbon layer is rotated by 60𝑜 

 

 Interlayer spacing 𝑎 ≈ 3.35𝑥10−10 

 

 

 Interlayer asymmetry opens an energy gap 



 Spatial arrangement of AB stacked bilayer 

graphene 



𝐻 =

0 𝑡𝑆(𝑘 ? 0

𝑡𝑆∗(𝑘 0 0 0

? 0 0 𝑡𝑆∗(𝑘 
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𝐻 =

0 𝑡𝑆(𝑘 𝑡⊥ 0
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𝑡⊥ 0 0 𝑡𝑆∗(𝑘 

0 0 𝑡𝑆(𝑘 0

 



Where 𝑆(𝑘  is as same as in the case of single 

layer graphene: 
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 After the diagonalization we obtain four 

possible eigenvalues: 

𝐸 (𝑘) = ±
1

2
𝑡⊥ ±

1

4
𝑡⊥
2 + 𝑡2|𝑆(𝑘)|2 

Near the 𝐾,𝐾′  points, there are two low 

energy branches:  

𝐸 (𝑘) ≈ ±
𝑡2|𝑆(𝑘)|2

𝑡⊥
≈

ℏ2𝑞2

2𝑚∗ , where 𝑞 = 𝑘 − 𝐾 or 

𝑞 = 𝑘 − 𝐾′ 



 

 

 

 

 

 

 

 𝛾0 = 3.033𝑒𝑉, 𝛾1 = 0.39𝑒𝑉 



 Singlelayer 

 

𝐸(𝑘) = ±𝑡|𝑆(𝑘)| ≈ 𝑣𝐹𝑞, where 𝑣𝐹 is the Fermi 
velocity. We easily observe that the 
dispersion relation is linear in 𝑞 

 

 Bilayer 

 

𝐸1,2(𝑘) ≈ ±
𝑡2|𝑆(𝑘)|2

𝑡⊥
≈

ℏ2𝑞2

2𝑚∗ , we easily observe 

that the dispersion relation is quadratic in 𝑞 

 



 The low energy Hamiltonian can be obtained by 
applying a Schrieffer-Wolff  transformation.  

 The Schrödinger equation can be written as: 

𝐸𝑐𝐴1 − 𝑡𝑆(𝑘)𝑐𝐴2 = 0 

−𝑡𝑆∗(𝑘)𝑐𝐵2 + 𝐸𝐶𝐵1 − 𝑡⊥𝑐𝐴2 = 0 

−𝑡⊥𝑐𝐵1 + 𝐸𝑐𝐴2 − 𝑡𝑆 𝑘 𝑐𝐴1 = 0 

−𝑡𝑆∗(𝑘)𝑐𝐵1 + 𝐸𝑐𝐵2 = 0 

 

 

 



 Expressing 𝑐𝐴1 and 𝑐𝐵2 in the terms of the other two 𝑐𝑖 and 
assuming |𝐸| ≪ |𝑡⊥| and |𝑡𝑆(𝑘)| ≪ 𝑡⊥ and keeping terms up 
to 1 𝑡⊥  we obtain: 

𝐸𝑐𝐴1 +
|𝑡𝑆(𝑘)|2

𝑡⊥
𝑐𝐵2 = 0 

|𝑡𝑆∗(𝑘)|2

𝑡⊥
𝑐𝐴1 + 𝐸𝑐𝐵2 = 0 

 It is possible to express these two equations as a single 
Schrodinger equation with a two component Hamiltonian: 
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 𝛾3 deforms the isoenergy lines producing so called trigonal 
warping.  

 At very low energies 𝐸 ≈ 1𝑚𝑒𝑉 this leads to a Lifshitz 
transition. The isoenergy line is broken into four pockets, 
one central and  three leg parts.  

 

 

 

 

 

 

 

 

  Further ref: European Physical Journal Special Topics, 148 
(1). pp. 91-103. 

 

 

 



 

  We apply a voltage perpendicular to the 

carbon planes. The process is described by 

the Hamiltonian: 

𝐻 =

𝑉 2 𝑡𝑆(𝑘 𝑡⊥ 0

𝑡𝑆∗(𝑘 𝑉 2 0 0

𝑡⊥ 0 −𝑉 2 𝑡𝑆∗(𝑘 

0 0 𝑡𝑆(𝑘 −𝑉 2 

 



 By diagonalizing the Hamiltonian we obtain following 
energy levels: 
 

 𝐸𝑖
2(𝑘) = 𝑡2|𝑆(𝑘)|2 +

𝑡⊥
2

2
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 Near 𝐾,𝐾′ 

 

 𝐸(𝑘) ≈ ±
𝑉

2
−

𝑉ℏ2𝑣2

𝑡⊥
2 𝑘2 +

ℏ4𝑣4

𝑡⊥
2𝑉
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 We conclude that adding an external bias can open a 
bandgap. 

 
 



 A-B stacked bilayer graphene is an ideal case 

obtained when interlayer rotations are 
𝜋

3
 

 

 

 In nature there are imperfections which 

more or less differ from the A-B stacked 

case. 

 

 



 Our next goal is to briefly discuss the theory of 
twisted bilayer graphene with a small twist 
angle. 

 

 Twisting the layers by a small angle with respect 
to each other significantly increases the number 
of atoms in a unit cell (for example twisting the 
layers for 𝜃 = 2.1𝑜 causes the unit cell to contain 
2884 atoms)  

 

 Due to the large number of atoms per unit cell 
the nearest neighbor approach is not 
mathematically easily applicable and a 
perturbative approach can be used instead  

 



 

 The low energy dispersion is linear as in the case 

of single layer 

 

 In contrast to bilayer graphene a perpendicular 

electric field does not open a gap  

 

 Further ref: Phys Rev Lett 99, 256802 (2007) 

 

 

 



 For few layer graphene different stacking  

orders are possible.   

 

We will shortly discuss the possible stacking 

orders of trilayer graphene.  





 



𝐻 =

𝐷1 𝑉 𝑊

𝑉† 𝐷2 𝑉

𝑊† 𝑉† 𝐷3

 

𝐷𝑖 =
𝑈𝑖 𝑣0𝜋

†

𝑣0𝜋 𝑈𝑖
,i=1,2,3 

𝑉 =
−𝑣4𝜋

† 𝑣3𝜋

𝛾1 −𝑣4𝜋
†

 

𝑊 =
0 𝛾2 2 
0 0

, 𝑣𝑖 = ( 3 2 )𝑎 𝛾𝑖 ℏ , 

𝜋 = 𝜉𝑝𝑥 + 𝑖𝑝𝑦, 𝜋† = 𝜉𝑝𝑥 − 𝑖𝑝𝑦  

 



 

 

 

 

 

 

 

 

 

 

 Band dispersion in the vicinity of 𝐾+ 𝑎𝑙𝑜𝑛𝑔 𝑝𝑥 

 𝛾0 = 3.16𝑒𝑉, 𝛾1 = 0.39𝑒𝑉, 𝛾2 = −0.020𝑒𝑉, 

 𝛾3 = 0.315𝑒𝑉, 𝛾4 = 0.044𝑒𝑉 



 Using Löwdin partitioning we obtain :  

 

 𝐻 𝐴𝐵𝐶
𝑒𝑓𝑓

= 𝐻 3 +𝐻 3𝑤 +𝐻 3𝑐 +𝐻 𝛥1 +𝐻 𝛥2 

 𝐻3 =
𝑣3

𝛾1
2

0 𝜋†
3

𝜋3 0
 

 𝐻 3𝑤 = −
2𝑣𝑣3𝑝

2

𝛾1
+

𝛾2

2

0 1
1 0

 

 𝐻 3𝑐 =
2𝑣𝑣4𝑝

2

𝛾1

0 1
1 0

 

 𝐻 𝛥1 = 𝛥1 1 −
𝑣2𝑝2

𝛾1
2

1 0
0 −1

 

 𝐻 𝛥2 = 𝛥2 1 −
3𝑣2𝑝2

𝛾1
2

1 0
0 1

 



Near the K,K’ points the dispersion relation 

is: 𝐸(𝑘) ≈
𝑡3|𝑆(𝑘)|3

𝑡⊥
2 ∝ ±𝑞3 

 

 So we conclude that ABC stacked graphene 

has cubic touching of the conduction and 

valence bands.  



𝐻 =

𝐷1 𝑉 𝑊

𝑉† 𝐷2 𝑉

𝑊† 𝑉† 𝐷1

 

𝐷𝑖 =
𝑈𝑖 𝑣0𝜋

†

𝑣0𝜋
† 𝑈𝑖

 

𝑉 =
−𝑣4𝜋

† 𝑣3𝜋

𝛾1 −𝑣4𝜋
†

 

𝑊 =
𝛾2 2 0

0 𝛾5 2 
 



 Considering only the largest inter layer 

hopping term, and following the same 

procedure as in ABC stacked graphene we 

obtain the low energy Hamiltonian:  

𝐻 =

0 𝑣𝜋† 0 0
𝑣𝜋 0 0 0
0 0 0 𝑥
0 0 𝑥† 0

 

Where 𝑥 =
𝑣2𝜋𝜋†

𝛾1 2 𝜋𝜋†
 



 There are four low energy bands. Two 
disperse lineary and two disperse quadraticly 
(as in bilayer). 

 

𝐸𝑘 = ±𝑣𝐹|𝑘| 

 

𝐸 = ±
𝑡⊥ 2

2
±

𝑡⊥
2

2
+ 𝑣𝐹

2|𝑘|2 

 

 Comparing ABA and ABC we see that the 
dispersion depends on the order of stacking. 

 

 



Bilayer graphene (and warping) 
PRL 96, 086805 (2006) 
 
Trilayer graphene: 
Phys. Rev. B 80, 165409 (2009) (ABC and warping) 
Phys. Rev. B 82, 035409 (2010)  
Phys. Rev. B 79, 125443 (2009) (ABA stack + gate) 
 
Twisted bilayer graphene 
Phys Rev Lett 99, 256802 
Phys Rev B 81, 161405 

 

Electronic transport in Bilayer graphene 
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